4.2 The Definite Integral

The definite integral of a function $f(x)$ from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=(b-a) / n$ is the width of the subintervals and $x_{i}=a+i \Delta x, i=1, \ldots, n$ are equally spaced points from a to b.

The symbol \int is called an integral sign, the function $f(x)$ is called the integrand, a is the lower limit, and b is the upper limit of the integral. The symbol $d x$ has no intrinsic meaning, but reflects Δx in the limit and specifies the variable.

If the above limit exits, we say that $f(x)$ is integrable. Any function that is continuous or has only a finite number of jump discontinuities on $[a, b]$ is integrable. The process of finding $\int_{a}^{b} f(x) d x$ is called integration. The sum $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ is called a Riemann Sum. We are using the right endpoints of the subintervals in this definition, but any sample point x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$ may be used instead.

The definition is the same as our earlier definition of area under a graph, except that we do not assume that $f(x)$ is positive. The result is still connected to area. The definite integral can be viewed as the sum of the areas under $y=f(x)$ where $f(x)>0$ minus the sum of the areas under $y=f(x)$ where $f(x)<0$.

$$
\int_{a}^{b} f(x) d x=A-B+C
$$

Properties of the Integral

1. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
2. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
3. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$
4. $f(x) \leq g(x) \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.

A special case of 1 , is $\int_{a}^{b} c d x=c \int_{a}^{b} 1 d x=c(b-a)$. Also, from 4, if $m \leq f(x) \leq M$ then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.

In addition to these rules, we adopt the conventions

$$
\int_{a}^{a} f(x) d x=0, \quad \int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x
$$

which are compatible with all the other rules and allow more freedom in manipulating integrals.
Example: Estimate $\int_{1}^{8} \sqrt[3]{x} d x$
Solution: Since $1=\sqrt[3]{1} \leq \sqrt[3]{x} \leq \sqrt[3]{8}=2$, the above rules imply $1(8-1)=7 \leq \int_{1}^{8} \sqrt[3]{x} d x \leq 2(8-1)=$ 14. We can better estimate the value of the integral by using the average, $\int_{1}^{8} \sqrt[3]{x} d x \approx \frac{7+14}{2}=10.5$.

Of course, we may use Riemann Sums to estimate the integral as well. If we use $n=7$ subintervals, then $\Delta x=(8-1) / 7=1$ and $x_{i}=1+i$, for $i=1, \ldots, 7$, so

$$
\begin{aligned}
& \int_{1}^{8} \sqrt[3]{x} d x \approx \sum_{i=1}^{7} f\left(x_{i}\right) \Delta x=f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8) \\
& \quad=\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}+\sqrt[3]{5}+\sqrt[3]{6}+\sqrt[3]{7}+\sqrt[3]{8} \\
& \quad=11.73
\end{aligned}
$$

If we use $n=70$, then $\Delta x=(8-1) / 70=1 / 10=0.1$ and $x_{i}=1+i / 10$, so

$$
\begin{aligned}
& \int_{1}^{8} \sqrt[3]{x} d x \approx \sum_{i=1}^{70} f\left(x_{i}\right) \Delta x \\
& \\
& \quad=0.1(f(1.1)+f(1.2)+f(1.3)+\cdots+f(2.1)+f(2.2)+f(2.3)+\cdots+f(8.0)) \\
& \\
& \quad=0.1(\sqrt[3]{1.1}+\sqrt[3]{1.2}+\sqrt[3]{1.3}+\cdots+\sqrt[3]{2.1}+\sqrt[3]{2.2}+\sqrt[3]{2.3}+\cdots+\sqrt[3]{8.0}) \\
& \\
& \quad=11.29979 \quad \text { (The exact value of the integral is } 11.25 .)
\end{aligned}
$$

Example: Approximate $\int_{1}^{3} \frac{1}{x} d x$ using a Riemann Sum with $n=5$. Take the sample points to be the midpoints of the subintervals.

Solution: Since $\Delta x=(3-1) / 5=0.4$, the endpoints of the 5 subintervals are $x_{0}=1, x_{1}=1.4$, $x_{2}=1.8, x_{3}=2.2, x_{4}=2.6, x_{5}=3.0$. The midpoints are thus $x_{1}^{*}=1.2, x_{2}^{*}=1.6, x_{3}^{*}=2.0, x_{4}^{*}=2.4$,
$x_{5}^{*}=2.8$. The corresponding Riemann Sum is

$$
\begin{aligned}
\int_{1}^{3} \frac{1}{x} d x & \approx \sum_{i=1}^{5} f\left(x_{i}^{*}\right) \Delta x \\
& =0.4(f(1.2)+f(1.6)+f(2.0)+f(2.4)+f(2.8)) \\
& =0.4\left(\frac{1}{1.2}+\frac{1}{1.6}+\frac{1}{2.0}+\frac{1}{2.4}+\frac{1}{2.8}\right) \\
& =1.092857
\end{aligned}
$$

(The exact value of the integral is 1.098612.)
Example: Use the definition of the integral to calculate $\int_{-1}^{3} 2 x-1 d x$.

Solution: The region under the graph consists of two triangles one above the x-axis with area $\frac{1}{2} \cdot \frac{5}{2} \cdot 5=\frac{25}{4}$, and one below the x-axis with area $\frac{1}{2} \cdot \frac{3}{2} \cdot 3=\frac{9}{4}$, so we know the answer must be $\int_{-1}^{3} 2 x-1 d x=\frac{25}{4}-\frac{9}{4}=4$. To use the definition, we work out a general formula for the Riemann Sum: $\Delta x=\frac{3-(-1)}{n}=\frac{4}{n}$, $x_{i}=a+i \Delta x=-1+i \frac{4}{n}$, and

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(2\left(-1+i \frac{4}{n}\right)-1\right) \frac{4}{n}=-\frac{12}{n} \sum_{i=1}^{n} 1+\frac{32}{n^{2}} \sum_{i=1}^{n} i=-12+\frac{32 n(n+1)}{2 n^{2}}=4+\frac{16}{n}
$$

Here we are using a well-known formula $\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}$. The value of the integral is the limit of the Riemann Sum as $n \rightarrow \infty$ which is 4 , as expected.

