4.2 The Definite Integral

The definite integral of a function f(x) from a to b is

where $\Delta x = (b-a)/n$ is the width of the subintervals and $x_i = a + i\Delta x$, i = 1, ..., n are equally spaced points from a to b.

The symbol \int is called an **integral sign**, the function f(x) is called the **integrand**, a is the **lower limit**, and b is the **upper limit** of the integral. The symbol dx has no intrinsic meaning, but reflects Δx in the limit and specifies the variable.

If the above limit exits, we say that f(x) is **integrable**. Any function that is continuous or has only a finite number of jump discontinuities on [a, b] is integrable. The process of finding $\int_{a}^{b} f(x) dx$ is called **integration**. The sum $\sum_{i=1}^{n} f(x_i)\Delta x$ is called a **Riemann Sum**. We are using the right endpoints of

the subintervals in this definition, but any sample point x_i^* in $[x_{i-1}, x_i]$ may be used instead.

The definition is the same as our earlier definition of area under a graph, except that we do not assume that f(x) is positive. The result is still connected to area. The definite integral can be viewed as the sum of the areas under y = f(x) where f(x) > 0 minus the sum of the areas under y = f(x) where f(x) < 0.

 $\int_{a}^{b} f(x) \, dx = A - B + C$

Properties of the Integral

1.
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

3. $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$
4. $f(x) \le g(x) \Rightarrow \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$
A special case of 1, is $\int_{c}^{b} c dx = c \int_{a}^{b} 1 dx = c(b-a)$. Also, from 4, if $m \le f(x) \le M$ then

n \int_a J_a $m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a).$

In addition to these rules, we adopt the conventions

$$\int_{a}^{a} f(x) \, dx = 0, \qquad \int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx$$

which are compatible with all the other rules and allow more freedom in manipulating integrals.

Example: Estimate $\int_{1}^{\infty} \sqrt[3]{x} dx$ Solution: Since $1 = \sqrt[3]{1} \le \sqrt[3]{x} \le \sqrt[3]{8} = 2$, the above rules imply $1(8-1) = 7 \le \int_{1}^{8} \sqrt[3]{x} \, dx \le 2(8-1) = 1$

14. We can better estimate the value of the integral by using the average, $\int_{1}^{8} \sqrt[3]{x} \, dx \approx \frac{7+14}{2} = 10.5$. Of course, we may use Riemann Sums to estimate the integral as well. If we use n = 7 subintervals, then $\Delta x = (8-1)/7 = 1$ and $x_i = 1 + i$, for i = 1, ..., 7, so

$$\int_{1}^{8} \sqrt[3]{x} \, dx \approx \sum_{i=1}^{7} f(x_i) \Delta x = f(2) + f(3) + f(4) + f(5) + f(6) + f(7) + f(8)$$
$$= \sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{4} + \sqrt[3]{5} + \sqrt[3]{6} + \sqrt[3]{7} + \sqrt[3]{8}$$
$$= 11.73$$

If we use n = 70, then $\Delta x = (8 - 1)/70 = 1/10 = 0.1$ and $x_i = 1 + i/10$, so

$$\int_{1}^{8} \sqrt[3]{x} \, dx \approx \sum_{i=1}^{70} f(x_i) \Delta x$$

= 0.1 $\left(f(1.1) + f(1.2) + f(1.3) + \dots + f(2.1) + f(2.2) + f(2.3) + \dots + f(8.0) \right)$
= 0.1 $\left(\sqrt[3]{1.1} + \sqrt[3]{1.2} + \sqrt[3]{1.3} + \dots + \sqrt[3]{2.1} + \sqrt[3]{2.2} + \sqrt[3]{2.3} + \dots + \sqrt[3]{8.0} \right)$
= 11.29979 (The exact value of the integral is 11.25.)

Example: Approximate $\int_{1}^{3} \frac{1}{x} dx$ using a Riemann Sum with n = 5. Take the sample points to be the midpoints of the subintervals.

Solution: Since $\Delta x = (3-1)/5 = 0.4$, the endpoints of the 5 subintervals are $x_0 = 1$, $x_1 = 1.4$, $x_2 = 1.8, x_3 = 2.2, x_4 = 2.6, x_5 = 3.0$. The midpoints are thus $x_1^* = 1.2, x_2^* = 1.6, x_3^* = 2.0, x_4^* = 2.4, x_5 = 1.6, x_5 = 1.6$

 $x_5^* = 2.8$. The corresponding Riemann Sum is

$$\int_{1}^{3} \frac{1}{x} dx \approx \sum_{i=1}^{5} f(x_{i}^{*}) \Delta x$$

= 0.4 $\left(f(1.2) + f(1.6) + f(2.0) + f(2.4) + f(2.8) \right)$
= 0.4 $\left(\frac{1}{1.2} + \frac{1}{1.6} + \frac{1}{2.0} + \frac{1}{2.4} + \frac{1}{2.8} \right)$
= 1.092857

(The exact value of the integral is 1.098612.)

Example: Use the definition of the integral to calculate $\int_{-1}^{3} 2x - 1 dx$.

Solution: The region under the graph consists of two triangles one above the x-axis with area $\frac{1}{2} \cdot \frac{5}{2} \cdot 5 = \frac{25}{4}$, and one below the x-axis with area $\frac{1}{2} \cdot \frac{3}{2} \cdot 3 = \frac{9}{4}$, so we know the answer must be $\int_{-1}^{3} 2x - 1 \, dx = \frac{25}{4} - \frac{9}{4} = 4$. To use the definition, we work out a general formula for the Riemann Sum: $\Delta x = \frac{3 - (-1)}{n} = \frac{4}{n}$, $x_i = a + i\Delta x = -1 + i\frac{4}{n}$, and

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(2\left(-1+i\frac{4}{n}\right) - 1 \right) \frac{4}{n} = -\frac{12}{n} \sum_{i=1}^{n} 1 + \frac{32}{n^2} \sum_{i=1}^{n} i = -12 + \frac{32n(n+1)}{2n^2} = 4 + \frac{16}{n}$$

Here we are using a well-known formula $\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. The value of the integral is the limit of the Riemann Sum as $n \to \infty$ which is 4, as expected.